Comparison of Three Popular Parallel Programming Models on the Intel Xeon Phi
نویسندگان
چکیده
Systems with large numbers of cores have become commonplace. Accordingly, applications are shifting towards increased parallelism. In a general-purpose system, applications residing in the system compete for shared resources. Thread and task scheduling in such a multithreaded multiprogramming environment is a significant challenge. In this study, we have chosen the Intel Xeon Phi system as a modern platform to explore how popular parallel programming models, namely OpenMP, Intel Cilk Plus and Intel TBB (Threading Building Blocks) scale on manycore architectures. We have used three benchmarks with different features which exercise different aspects of the system performance. Moreover, a multiprogramming scenario is used to compare the behaviours of these models when all three applications reside in the system. Our initial results show that it is to some extent possible to infer multiprogramming performance from single-program cases.
منابع مشابه
Modern Platform for Parallel Algorithms Testing: Java on Intel Xeon Phi
Parallel algorithms are popular method of increasing system performance. Apart from showing their properties using asymptotic analysis, proof-of-concept implementation and practical experiments are often required. In order to speed up the development and provide simple and easily accessible testing environment that enables execution of reliable experiments, the paper proposes a platform with mu...
متن کاملFirst experiences with the Intel MIC architecture at LRZ
With the rapidly growing demand for computing power new accelerator based architectures have entered the world of high performance computing since around 5 years. In particular GPGPUs have recently become very popular, however programming GPGPUs using programming languages like CUDA or OpenCL is cumbersome and errorprone. Trying to overcome these difficulties, Intel developed their own Many Int...
متن کاملPorting FEASTFLOW to the Intel Xeon Phi: Lessons Learned
In this paper we report our experiences in porting the FEASTFLOW software infrastructure to the Intel Xeon Phi coprocessor. Our efforts involved both the evaluation of programming models including OpenCL, POSIX threads and OpenMP and typical optimization strategies like parallelization and vectorization. Since the straightforward porting process of the already existing OpenCL version of the cod...
متن کاملPerformance Analysis of an Astrophysical Simulation Code on the Intel Xeon Phi Architecture
We have developed the astrophysical simulation code XFLAT to study neutrino oscillations in supernovae. XFLAT is designed to utilize multiple levels of parallelism through MPI, OpenMP, and SIMD instructions (vectorization). It can run on both CPU and Xeon Phi co-processors based on the Intel Many Integrated Core Architecture (MIC). We analyze the performance of XFLAT on configurations with CPU ...
متن کاملEffective Barrier Synchronization on Intel Xeon Phi Coprocessor
Barriers are a fundamental synchronization primitive, underpinning the parallel execution models of many modern shared-memory parallel programming languages such as OpenMP, OpenCL or Cilk, and are one of the main challenges to scaling. State-of-the-art barrier synchronization algorithms differ in tradeoffs between critical path length, communication traffic patterns and memory footprint. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014